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Orthogonal subspaces in an iterative method for the 
diagonalisation of Hermitian operators 
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Departamento de Fisica, Universidad Nacional, CC 67 La Plata (1900) Argentina 
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Abstract. An iterative method for calculating low-lying eigenvalues of a Hermitian 
operator is extended and modified so as to provide an efficient algorithm that yields the 
whole spectrum. 

1. Introduction 

In recent years, the Lanczos algorithm (Lanczos 1950) for the diagonalisation of 
quantum mechanical operators has been widely utilised (Sebe and Nachamkin 1969, 
Cole et a1 1973, 1974a, b, c, 1975a, b, c, d, Toepfer 1975, Whitehead 1972). Recently, 
a most interesting iterative method has been presented by Berger and co-workers 
(Berger et a1 1977, Miller and Berger 1979) which may, under certain circumstances, be 
considered as an alternative to the Lanczos procedure. This new algorithm, which for 
the sake of brevity shall be referred to as the BMKD one, has the great advantage of 
drastically reducing the computer storage space and is both simple and elegant (Berger 
etal  1977). 

As presented originally (Berger er a1 1977) the method is ideally suited for obtaining 
the lowest-lying eigenvalue (and eigenvector). Having nicely surmounted the so-called 
pseudoconvergence problem (Miller and Berger 1979), the first excited state can also be 
easily obtained. However, were one faced with the necessity of finding the complete 
spectrum of a given Hermitian operator of not exceedingly large dimensions (say, 
40 x 40), the set of ‘parallel iterations’ (Miller and Berger 1979) to be performed may 
give rise to numerical complications. At the very least, steps would have to be adopted 
that may defile the extreme simplicity and beauty of the algorithm. 

Since among the existent diagonalisation schemes, the BMKD is in many circum- 
stances the simplest available one, we feel that the problem mentioned in the previous 
paragraph deserves some consideration. The purpose of the present work is to present 
a modified version of the method that renders it more manageable in those cases in 
which the complete spectrum is sought. We have in mind, of course, medium-size 
matrices (- 100 x 100) only. 

We shall briefly review, for the sake of completeness, the BMKD scheme in Q 2, and 
present our amended version of the algorithm in 0 3. Section 4 is devoted to some small 
numerical examples and some conclusions are drawn in 0 5. 
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2. The BMKD scheme 

This is an algorithm (Berger et a1 1977) that, supported by the variational principles of 
PadC-Rayleigh-Ritz (Bessis 1976), allows one to evaluate the eigenvectors (and 
eigenvalues) of a given Hermitian operator A defined everywhere in a finite dimen- 
sional vector space V,, of dimension n. It yields the eigenvalues (and corresponding 
eigenvectors) one at a time, starting with the calculation of the lowest one (and in 
increasing order), via an iterative process which can be succinctly described as follows. 
A given initial vector (normalised) Ik) E V,, is chosen. When d operates on Ik) one 
obtains 

A ( k  ) = ek lk ) -k V k  J k p )  

( k  I kP) = 0 

(2.1) 

with (Berger et a1 1977) 

The states ( k )  and ( k p )  define a 2 X 2 subspace of V,, in which A is to be diagonalised, 
the corresponding matrix being 

with 

a k  = (kp  lkp (2.4) 

The eigenvector Ik + 1) of M corresponding to its lowest eigenvalue now takes the 
place of J k )  in equation (2. l), thus generating, in the same fashion, a new 2 X 2 matrix to 
be diagonalised, and so on. Let K denote the set {[A)} of eigenvectors of A whose 
overlap with the initial vector Ik) is different from zero. Berger et a1 (1977) have shown 
that the iterative process described above converges to that member of K whose 
corresponding eigenvalue is the lowest. 

The BMKD algorithm neatly avoids some numerical and computational problems 
that may arise when dealing with the original Lanczos approach (Lanczos 1950). As the 
BMKD iterations involve only 2 x 2 matrices, in a given iteration step only two vectors 
are needed and, moreover, just one new vector (Ikp)) orthogonal to the iterating one 
( ( k )  in equation (2.1)) is to be built. On the other hand, in employing Lanczos’ method, 
one must enforce the orthogonality of its new basis vector with respect to all those 
previously generated. This may entail the task of reorthogonalising, in step number m, 
say, the mth basis vector with respect to the preceding m - 1 ones, which obviously 
demands both a larger storage space and additional com.puting time than in the BMKD 

case. 
As stated by the authors (Berger et a1 1977), their method may in principle be 

utilised to obtain additional eigenvalues (and eigenvectors) of A, other than the lowest 
one ( /A = 1)). The idea is to project out of the original start vector Ik) the vector IA = 1) 
already found, and repeat the procedure with the new initial vector thus constructed, 
which may ultimately yield (A = 2), etc. 
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Two types of difficulties may arise in applying this beautiful scheme. On the one 
hand, the component of the desired eigenvector in the original (arbitrarily chosen) start 
vector may be small (although non-vanishing) compared with the components of one or 
more of the neighbouring eigenvectors. In other words, the selection of the initial 
vector has not been appropriate. As a consequence, the method may converge to the 
wrong eigenvalue. This pseudoconvergence can be avoided by using the 'parallel 
iterations' scheme (PIS) of Miller and Berger (1979). A different (although not 
unrelated) problem may also present itself, no matter how good the choice of the start 
vector, because of the unavoidable loss of precision inherent to data processing in a 
computer. As a consequence, in evaluating some 'excited' eigenvalue (i.e. not the 
lowest one) the iterating vector may acquire a non-vanishing overlap with a previously 
evaluated one. The iterative process will then converge to  this last vector. Even a very 
small spurious overlap will have this effect, an annoying numerical feature which may 
well make it impossible, in many circumstances, to obtain high-lying eigenvalues with 
the BMKD method. It is our purpose to implement a simple device that circumvents this 
difficulty (see §3). 

It should be explicitly pointed out that the PIS of Miller and Berger (1979) has been 
implemented by them in order to obtain the lowest two eigenvalues. The authors 
suggest the possibility of extending their approach by inclusion of additional sets of 
parallel iterations, in order to evaluate more than two eigenvectors. In doing this, 
however, still another difficulty appears (again, not unrelated to the previous ones), i.e. 
numerical instabilities which may even prevent the process from converging and will be 
illustrated below. This last problem can also be surmounted by recourse to the 
algorithm to be presented in the following section. 

3. A modified BMKD algorithm 

The purpose of the present section is to present a modified version of the BMKD 

algorithm in order to overcome some difficulties, mentioned in the previous section, 
that arise in applying the original formulation of the method. 

We consider again the Hermitian operator A defined in V, and denote by {(A)} the 
set of its eigenvectors. 

A IA ) = EA (A) A = 1,. . . , n  (3.1) 

where we assume 

El SE2 SE3 S .  . . SE,. (3.2) 

Let B, be an arbitrary basis in V, and A, the corresponding matrix of A in that basis 

As usual, we need a starting vector Ik,) and, for convenience, we assume 

(A Ikd # 0 A = l , 2  , . . . ,  n. (3.4) 

We shall now regard the BMKD algorithm as a set of operations that define an 
':perator' &A, such that acts on a given vector / k  E V, yielding that eigenvector of 
A, selected among those having non-zero overlap with Jk,), whose eigenvalue is the 
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lowest. Thus 

We point out that the set of ‘parallel iterations’ proposed by Miller and Berger 
(1979) are included in the definition of I;.a. 

3.1. Orthogonal subspaces 

Consider now the subspace (of dimension n - 1) of V,, orthogonal to ]A = 1) 

= {Ix)/lx) E V,, A ( X J A  = I) = 0)  (3.7) 

B , , - l={~f l ) ; i= l  ) . . . ,  n-1). (3.8) 

Dn,i = {Ifi), Ifd, . . , I fn - i ) ,  = 1)) (3.9) 

and B,-l a given orthonormal basis of 

Since (A = llfl) = 0 for all i ,  the set D,,l 

is a basis of V,,. Now, denote the matrix representing the change of basis B, +Dn,,  as 
H,, ; then 

/x )B, Hn Ix >On I (3.10) 

where I X ) ~  denotes the vector Ix) developed according to the basis Q. 
The matrix of A in the basis D,,, is 

IflIlD, =Hi’  lflll&, =HilAnHn.  (3.11) 

and 

I ~ ~ I I I B ,  = A n - i .  (3.12) 

It should be clear now (we shall show it formally below) that the matrix of A in the basis 
D,,,l adopts the form 

We introduce now the operator A, as the restriction of A to the subspace 
the (n - 1) x (n - 1) matrix A,-1 defined as 

r 
(3.13) 

where El denotes the lowest eigenvalue of A. 
with respect to its lowest eigenvector. Although 

lNllDn,l possesses identical information to that of llAllBH, the structure (3.13) makes it 
clear that its n - 1 remaining eigenvectors may be computed by diagonalisation of A,,.., 
(a (n -- 1) x (n  - 1) procedure). 

The BMKD algorithm is now to be applied to the operator A 1, whose matrix is given 
by (3.12). The start vector should now be chosen within the subspace S ,  - which leads 
one to consider the initial vector 

In a way, we have ‘diagonalised’ 

Jk,)= Iki)-(A Ilki)(A = 1) 

which obviously satisfies (k2 /A  = 1) = 0, i.e. lk2) E S,,-l. 

(3.14) 
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This new application of the BMKD formalism 

CA1Jk2) = IA = 2)Bn-1 (3.15) 

yields the second eigenvector of A, expressed in the basis B,-l of In order to 
obtain the expression of (A = 2) in the original basis B, it suffices to add to (A = 2)B,_1 a 
null nth component. This gives us the corresponding coordinates in Dn,l, which, using 
(3. lo), finally leads to 

(3.16) 

Knowing both IA = 1) and (A = 2), a new reduction of V, is feasible, that defines Sn-2 
according to 

&-,={(y) / (y )ESn-1  A ( Y ( A  =2)=01* (3.17) 

A new operator A2 (the restriction of A, to the subspace S,..,) should now be 

(3.18) 

In a similar fashion, higher-lying eigenvalues may be found, until the whole 
spectrum of A is exhausted. Now, one wishes to express the eigenvectors IA = j  + 1) 
thus obtained in the original basis B, rather than in the reduced one This entails a 
product of matrices of the form 

(3.19) 

( A  = 2)5, 1= H,(A = 2),,,,. 

introduced and the procedure (3.8)-(3.13) can be repeated, yielding IA = 3), 

CA2(ks)  = (A = 3)B,-Z* 

(A = j  + 1)s- = hn,&n,l . . . hn,j-,lA = j + I);,-, 
where 

(A = j + l ) ; , t - i~  ((A = j  + 1 ) ~ , , - ~ ,  0, . . . , 0)  

is a vector with the last j components equal to zero, and 

hn,k = b;;::] 
(3.20) 

(3.21) 

is an I I  X n matrix which is built by completing with zeros in the appropriate places the 
( n  - k ) x ( n  - k )  matrix Hn-k.  

Notice now that, in order to obtain (A = j )Bm,  one needs the product 

PI "hn,&n,l * . . hnJ-2 (3.22) 

with the property 

PI =Pl-ihn,l-2. (3.23) 

So that the procedure of expressing a given vector IA = j  + 1) in the original basis B, 
requires the storage of only two matrices, i.e. PI and h,,l- l .  

Obviously, as we deal with higher and higher eigenvalues, both the number of 
iterations implied in CA (until convergence is reached) and the CPU computer time 
required in each iteration drastically decreases, since the dimensions of the matrices 
involved diminish steadily. In particular, in the case of the last two eigenvalues, no 
iterations are needed, since only a 2 x 2 matrix remains. 

One should point out that, within the present framework, the second of the 
problems mentioned in § 2 with reference to the BMKD scheme cannot arise (at least as 
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posed there) because of the orthogonality of the corresponding subspaces involved (see, 
however, Q 3.3). 

3.2. Construction of H, 

Let B, be the initial basis in V, : 

B n  ={Ivi>li=l,.  . . , ne 

The expansion of IA = 1) in such a basis will be 

(3.24) 

n 
= P i I V i )  (3.25) 

where the coefficients Pi are determined by the action of f i ~  upon the starting vector. As 
an example, the basis BA-l introduced in the previous subsection is 

i = l  

B A - l : { / v l ) - P l / P k l U k ) ;  * S .  ; Iuk-1)  

- P k - l / P k I U k ) ;  I U k + l ) - P k + l / P k l U k ) ;  * * .  ; I v n ) - P n / P k I U k ) ) *  

We choose k = n for convenience. In such a case 

BA-1 : {Igi))i = 1, ..., n - 1 .  

(3.26) 

(3.27) 

with 

(gi) = IUi) - P i / P n  Inn )  i = 1, .  . . , n-1. (3.28) 

Obviously, the /gi) are linearly independent and generate S,-l. The Gram-Schmidt 
orthonormalisation process allows one to obtain an orthonormal basis of Sn-l, con- 
structed from BApl and which we call B,-l. 

(3.29) B,-I: { I f i ) ,  i = 1,. . . , n -1) 

where 
1 

I f i ) =  ajiilgj) i = 1,. . . , n -  1. (3.30) 

The Gram-Schmidt algorithm determines the coefficients c y j i .  The bases BApl and 

] = 1  

BflPl, extended to the space V,,, are given by 

DA,i: {Igi), IgJ, . . . , Ign-i), /A = 1)) 
and 

{Ifi), If2), . . . , Iffl-i>, IA = 1)) 
respectively. Now we introduce the matrix 

all f f12  * * * a1,,-1 

0 a 2 2  . . . ff 2,n -2  

0 0 . .  . a,-l,n-l I !  0 0 * . .  0 

H i  = 

such that 

1X)DA.j  = H i  IX)D,,I 

0 :I 1 

(3.31) 

(3.32) 

(3.33) 

(3.34) 
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and the matrix HL 

(3.35) 

(3.36) 

with the property 

Ix)B,  =Hi Ix)D;,,* (3.37) 

The passage from the basis D,,l to the B, is finally accomplished by the matrix H, given 

H, = H i H ;  (3.38) 
by 

since 

lx ) B ,  = Hn (x )D,,, 1 .  (3.39) 

Of course, similar procedures yield the matrices H,-z etc. 

3.3. Practical considerations 

In applying the formalism discussed in the present work an unpleasant feature may 
arise, that stems from the difficulty in numerically achieving the form (3.13) for l @ / l D m , l  
(the form (3.38) for H,), That is, A, is not ‘exactly’ diagonalised with respect to IA = 1). 
This effect is due to one of the following reasons. 

(i) lA = 1) is not the ‘exact’ eigenvector of A, (by ‘exact’ one should understand 
infinite precision). 

(ii) Error accumulation in computing H,. 
As a consequence S,-l is not a subspace strictly orthogonal to IA = l), and contains a 

small projection of /A = l), with a spurious eigenvalue E = 0. 
This does not constitute any problem as long as one deals with the negative region of 

the spectrum of A, because always converges to the lowest available eigenvalue 
(Berger et a1 1977). On the other hand, if one is working with the positive region, the 
procedure will converge to E .  

This is not the pseudoconvergence problem discussed in Miller and Berger (1979) 
although it could be regarded as its counterpart within the present scheme, and can be 
circumvented with their PIS treatment. In our case, of course, there can be no 
convergence to a previously found eigenvector, since they do not exist in the space one 
is working with. The point is however that the problem we are discussing in this 
subsection ( a )  can only appear if one deals with positive eigenvalues and (b )  can be 
surmounted by recourse to a much simpler device than the parallel iterations scheme: 
Assume that an upper bound y to the absolute value of the eigenvalues of A is known. 
A trivial upper bound of this sort, for a given matrix, is the sum of the absolute values of 
its diagonal elements. One simply considers the operator A - y?, f denoting the 
identity operator, which possesses an entirely negative spectrum (the eigenvectors, of 
course, do not change). 
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4. Numerical examples 

As a practical application we discuss here the complete diagonalisation of the 41 X 41 
energy matrix that arises in the modified Lipkin model of Abecasis et a1 (1969) for 40 
particles and coupling constant equal to 0.015. 

This matrix possesses both negative and positive eigenvalues and the relevant 
results are illustrated in figure 1. 

Let vi denote the number of BMKD iterations required to obtain the jth eigenvector, 
and nj the dimension of the subspace in whish one works to obtain it. We plot v j / v l  
against n,. (In particular, if j = 2, only a 2 x 2 matrix remains, so no iteration is needed.) 

Figure l(a) shows that the pseudoconvergence discussed in § 3.3 arises for j < 18. 
Recourse is then made to the parallel iterative procedure (Miller and Berger 1979), and 
the relative number of iterations increases. In figure l (b )  we plot the same quantities. 
Pseudoconvergence has here been circumvented with the prescription (§ 3.3), so that uj 
decreases monotonically. 

We shall now consider a very simple example that clearly illustrates the numerical 
difficulties that one may face in trying to implement the PIS of Miller and Berger (1979) 
in order to obtain more than two eigenvalues (see the last paragraph of 0 2). Let us 
diagonalise the 5 X 5 matrix that arises in the model of Abecasis et a1 (1969) for four 

' I  I 

111 

la1 

I I I I I I I 1  
25 20 15 10 5 

"1 

lbl 

Figure 1. Relative number of iterations v, /v ,  needed to obtain thejth eigenvector plotted 
against the dimension of the corresponding linear space n,. The calculation reported 
corresponds to a 41 X 41 matrix; ( a )  straightforward procedure, ( b )  pseudoconvergence is 
avoided. 
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particles and coupling constant equal to 0.1. Our version of the BMKD method and the 
PIS yield, of course, the first two eigenvalues without difficulties. Things are different, 
however, in the case of higher eigenvalues, as shown in table 1. Let us denote by E the 
‘exact’ eigenvalue and consider the quantity = (Ei - E ) 2 / E 2 ,  where i is an integer 
number that counts the successive iterations one must perform in applying any of these 
two schemes. Table 1 displays the behaviour of a?, both for our version of the BMKD 

method and for the PIS of Miller and Berger (1979). Notice that in the case of the last 
two eigenvalues, the method of the present work yields the final result after the first 
iteration?. On the other hand, the numerical instabilities that arise with the PIS may 
even prevent convergence, as illustrated in the case of the highest eigenvalue. In any 
case, our approach converges much sooner. 

Table 1. Relative deviation a: = (E -E,)’ /E2,  with respect to the exact eigenvalue E ,  of 
the approximate one E, obtained, using the iterative diagonalisation schemes discussed in 
the text, after performing the ith iteration. A 5 x 5 matrix is considered. In the case of the 
last two eigenvalues the method of the present work (PW) yields the correct answer after just 
one iteration, so that the corresponding v 2  are not shown. The BMKD approach fails to 
converge for the last eigenvalue. 

Eigenvalue 3 
Iteration 
number d w  

3 0.8733 0.667 x lo-’ 
4 0.2048 0.0 
7 0.0001 0.0 
8 0.0001 0.0 

11 0.0170 0.0 
12 O.OOOI x 1 0 - ~  0.0 
15 2.3228 0.0 
16 2.3224 0.0 
19 0.0001 x lo-* 0.0 
20 2.3229 0.0 
23 o.oooi x IO- 0.0 
24 0.0001 x 10-2 0.0 
27 0.0901 0.0 
28 0.1980 0.0 
31 o.oooi x 0.0 
32 0.0001 x lo-’ 0.0 
35 o.oooi x 0.0 
36 0.0001 x 10-16 0.0 
39 0.0 0.0 
40 0.0 0.0 
43 0.0 0.0 

4 5 

2 
~ B M K D  

0.0546 
0.0079 

0.0985 
0.2865 
0.2680 
1.4088 

1.4094 
1.4094 
0.2854 
0.2992 
0.0002 
0.2964 
0.0021 

0.4060 
0.0001 x 
0.2394 
0.0046 
0.4548 

0.0001 x 10-8 

o.oooi x 1 0 - ~  

0.0001 x lo-* 

0.4557 
0.2623 
0.8392 
1.2717 
0.6292 
0.5046 
0.6307 
0.1772 
0.8845 
0.1850 
0.6108 
0.6153 
0.1773 
0.5648 
0.1772 
0.6233 
0.6373 
0.1772 
0.7291 
0.6684 
0.1981 

These and many other numerical examples that we have studied exhibit an addi- 
tional advantage of our procedure. After each successive reduction to a smaller 
subspace, the corresponding reduced matrices A,-i tend to adopt forms increasingly 
closer to the diagonal one. This allows for a more rapid convergence in the action of the 
operator r - 2 ~  than could otherwise be expected. 

t See 5 3.1. 
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5. Conclusions 

A quite convenient method for the evaluation of the low-lying eigenvalues of a 
Hermitian operator (Berger et al 1977) has been modified in the present work so as to 
provide a rapid and economical algorithm that enables one to compute the whole 
spectrum. 

Notice that, although our scheme has been devised with the BMKD algorithm in 
mind, it ought to work for any other procedure with the restriction that the correspond- 
ing operator should yield the eigenvalues individually and in an ordered sequence. 
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